AI enabled task allocation for smart logistics operations using flexible mobile robots

MSc. Niki Kousi

ERF 2019, March 20, 2019, Bucharest
Dynamic reconfigurable shopfloors

“Enabling mobility on products and resources”

Mobile Product Platform (MPP)

“Human-Robot & Robot-Robot collaboration in a safe way”

Mobile Robot Platform (MRP)

Environment Perception

“Dynamic balancing and redirecting to stations”

Product & Process Perception

“Perception & skills to automatically program and execute multiple tasks”

Link to YouTube Video
Mobile Robot Platform (MRP)

- **Autonomous navigation** across the shopfloor in a safe way
- **Perform a variety of tasks** using on-board tooling
- **Dual arm manipulation** enhancing dexterity
- Collaborate with humans **acting as assistant** to them
- Collaborate with **other mobile resources** through share perception

![Image of Mobile Robot Platform (MRP) with THOMAS logo]

- UR 10 Arm (6 DOF)
- Pan-Tilt Camera
- UR 10 Arm (6 DOF)
- Torso (2 DOF)
- Mobile Platform (Omnidirectional)
Challenges

Mobile dual arm workers acting as assistants to humans are in the forefront of research agenda for industrial applications in EU manufacturing

• Existing challenges
 – Safety issues for removing fences
 – Accuracy in navigation / localization
 – Easy programming techniques
 – Intuitive interaction mechanisms
 – Monitoring and control of execution
Mobile dual arm workers acting as assistants to humans are in the forefront of research agenda for industrial applications in EU manufacturing.

Existing challenges:

- Safety issues
- Accuracy in navigation / localization
- Easy programming techniques
- Intuitive interaction mechanisms
- Monitoring and control of HRC execution

Thus, in this topic the focus is on HOW:

✓ To model this dynamically changing environment
✓ To distribute the task to the available resources
✓ To ensure collision free paths and arm motions
How to model and (re)-distribute the tasks to the resources?

- Hierarchical modelling of the shopfloor / process
- Resources suitability assessment
- Intelligent – search based – multi - criteria decision making
- Digital world model based dynamic robot programming
- Alternative scenarios assessment based on real time shopfloor data
How to enable collision free robot behaviour?
Outcome and Conclusions
Acknowledgements

This research has been partially supported by the research EU H2020 project “THOMAS - Mobile dual arm robotic workers with embedded cognition for hybrid and dynamically reconfigurable manufacturing systems” (Grant Agreement: 723616) funded by the European Commission.
Thank you for your attention!

Questions?

Laboratory for Manufacturing Systems & Automation (LMS)
University of Patras, Greece
www.lms.mech.upatras.gr